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Abstract—One of the most important and indispensable 

parameters of a Battery Management System (BMS) is to 

accurately estimate the State of Charge (SoC) of battery. 

Precise estimation of SoC can prevent battery from damage 

or premature aging by avoiding over charge or discharge. 

Due to the limited capacity of a battery, advanced methods 

must be used to estimate precisely the SoC in order to keep 

battery safely being charged and discharged at a suitable 

level and to prolong its life cycle. We review several existing 

effective approaches such as Coulomb counting, Open Circuit 

Voltage (OCV) and Kalman Filter method for performing the 

SoC estimation. Then we investigate both Artificial 

Intelligence (AI) approach and Formal Methods (FM) 

approach that can be efficiently used to precisely determine 

the SoC estimation for the smart battery management system 

as presented in [1]. By using presented approach, a more 

accurate SoC measurement can be obtained for the smart 

battery management system and battery supported Cyber-

Physical Systems (CPS). 

Keywords- Battery Management Systems (BMS), State of 

Charge (SoC), Artificial Intelligence (AI), Formal Methods 

(FM), Cyber-Physical Systems (CPS) 

I. INTRODUCTION 

Batteries are the most common electrical energystorage 
approach for mobile devices. In the 21

st
 century, battery 

technology is becoming the key bottleneck for many Cyber 
Physical Systems (CPS), which are critical to addressing the 
transportation, energy and environmental problems that face 
developing countries. Driven by an increasing awareness of 
global warming and CO2 emissions, the demand for clean fuel 
and energy is on the rise. As a result there is a growing shift 
towards the green-energy transportation such as Electric 
Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) [1] that 

require support from CPS. Moreover, battery-powered 
electronic devices have become ubiquitous in modern society 
due to a rapid expansion of the use of portable devices such as 
portable computers, tablet computers, smartphones, and 
cellular phones. This creates a strong demand for batteries with 
improved characteristics. There are distinct requirements for 
batteries, such as high energy storagedensity, no-memory 
effect, low self-discharge and long cycling life, so efficient 
Battery Management Systems (BMSs) become indispensable 
for modern battery-powered applications [2-4]. 

A BMS not only monitors and protects the battery, but also 
provides the guidance on optimal usage of the battery. One of 
the most important and indispensable parameters of a BMS is 
to accurately estimate the State of Charge (SoC) [5] of the 
battery. The SoC is defined as the present capacity of the 
battery expressed as a percentage of some reference. Due to the 
limited capacity of a battery, advanced methods must be used 
to estimate precisely the SoC of battery in order to keep it 
safely being charged and discharged at a suitable level and to 
prolong the life cycle of the battery. However, the 
measurement of SoC is not a trivial task, because one should 
also consider the battery voltage, current, temperature, aging 
and so on. Accurate SoC estimation can prevent the battery 
from damage or rapidly aging due to unwanted overcharge and 
overdischarge on the battery. 

The conventional SoC estimation method such as Coulomb 
counting suffers from an error accumulation glitch which leads 
to inaccurate estimation [6]. In addition, the finite battery 
efficiency and the chemical reaction taking place during charge 
and discharge cause temperature rise and badly influence the 
SoC estimation [2]. Therefore, efficient algorithms are 
definitely needed for the accurate SoC estimation. Furthermore, 
neither Coulomb counting nor voltage measurement alone is 

BCFIC 2012 1569602085

1



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

 

sufficient for high accuracy of SoC estimation, because the 
estimation of SoC is strongly influenced by many other factors 
such as charge/discharge rates, hysteresis, temperature, cell 
aging, etc. 

A smart BMS for aged batteries and multi-cell batteries was 
presented in [7], which aims to meet the following 
requirements: 

· Accurate estimation of SoC prevents battery damage or 
premature aging by avoiding unsuitable over charge and 
over discharge. 

· SoC can be effectively used to deduce how well the 
battery system is functioning relative to its nominal 
(rated) and end (failed) states. 

· The battery aging process needs to be reduced by 
conditioning the battery in a suitable manner (e.g. through 
controlling its charging and discharging profile), under 
various load conditions and harsh environments. 

· Hardware implementation of the BMS is flexible and 
adaptable in both Application-Specific Integrated Circuit 
(ASIC) and Field Programmable Gate Arrays (FPGA) 
technology. 

In this paper, we investigate a myriad of approaches in 
tackling SoC estimation for the smart battery management 
system and battery supported cyber-physical systems. The rest 
of the paper is organized as follows: Section 2 presents and 
discusses several techniques that have been widely applied for 
the battery SoC estimation. Artificial Intelligence (AI) 
approach for estimating the SoC of the smart battery 
management system is outlined in Section 3. Potential 
applications of Formal Methods (FM) for BMS are described in 
Section 4. Concluding remarks are given in Section 5 and 
directions for future work are pointed out at the same section. 

II. BATTERY SOC ESTIMATION 

Many techniques have been proposed previously to 
estimate the SoC of battery cells or battery packs, each of them 
has merits and demerits. 

A. Current Based SoC Estimation 

Current based SoC estimation is also known as Coulomb 
Counting [8-10], which takes integration of current and time 
into account to estimate SoC. Coulomb Counting requires an 
initial state namely SoC0, and if the initial state of the battery is 
known, from then the SoC can be calculated though this 
method. 

For example, the initial state is SoC0, using I ampere 
current to charge the battery for t hours, that will add I*t Ah 
charge in the battery. Also, if the capacity of the battery is C, 
then the final SoC can be calculated as follows (see also Fig. 1 
for details): 

           
   

 
  (1) 

According to theory, if a battery was charged for 3 hours at 
2A, the same energy can be released when discharging. 
However, this is not the case in reality as no methodology is 

perfect. For instance, Coulomb Counting suffers from a drift 
over time. As mentioned in [6], battery aging causes a gradual 
small and constant error in the variable. The small and constant 
error causes a tiny error for measurement of current, which will 
be magnified during each charging and discharging cycle and 
will result in the SoC drift. Therefore, if there is a way to re-
calibrate the SoC on a regular basis, such as reset the SoC to 
100% when the battery is fully charged, Coulomb Counting 
can be used to accurate estimate SoC and often enough to 
overcome drift. 

 

Figure 1.  Estimating SoC by using Coulomb Counting 

B. Voltage Based SOC Estimation 

 

Figure 2.  Relationship between Voltage and SoC of Lead Acid battery 

There are many applications that measure the SoC based on 
voltage, such as the charge balance shown in cellular phones. 
The voltage is firstly measured and then converted to SoC. 
When the battery is discharging, the voltage drops more or less 
linearly [8]. In practice, there are two cases, one for the Lead 
Acid battery and another for Li-ion battery [9]. For the Lead 
Acid battery, the voltage diminishes significantly when it is 
discharged as shown in Fig.2 [8]. The voltage is significantly 
affected by the current, temperature, discharge rate and the age 
of cell. These factors need to be compensated, in order to 
achieve a higher accuracy of SoC. 

For the Li-ion battery, there is a very small change for 
voltage between each charging and discharging cycle as shown 
in Fig. 3. Due to the constant voltage of Li-ion battery, it is 
difficult to estimate the SoC by using voltage-based method. 
However, the voltage of the Li-ion battery changes 
significantly at the both ends of SoC range, which can be two 
important indicators of imminent discharge. As an example, for 
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many applications an early warning is required before the 
battery is completely discharged or empty. 

 

Figure 3.  Relationship between Voltage and SoC in Li-ion battery 

C. Extended Kalman Filter 

In 1960s, Kalman Filter theory was proposed [11, 12] to 
accurately estimate the state for the linear systems, especially 
for systems with multiple inputs, by removing unwanted noise 
from a set of data. However, for the systems with specific 
requirements, such as non-normality and non-linearity, the 
application of the Kalman Filter method is not feasible. 

Due to the time-variance, nonlinear model of the battery, 
noise assumption and the measurement error of the BMS, 
extended Kalman Filter (EKF) [13] is used to estimate the SoC 
for such nonlinear battery systems. In addition, EKF 
linearization processes are used at each time step to 
approximate the nonlinear system with a linear time-varying 
system. EKF becomes an elegant and powerful solution to 
estimate the SoC. 

III. ARTIFICIAL INTELLIGENCE SYSTEMS FOR BATTERY SOC 

ESTIMATION 

In achieving the accurate estimation of SoC, Artificial 
Intelligence (AI) systems like Neural Networks [14] and Fuzzy 
Logic [15] systems have been regarded as universal 
approximators. Many techniques have been developed to 
approximate the nonlinear functions for practical applications 
[16-17]. The B-Spline Membership Function (BMF) is 
constructed in [16]. This BMF possesses the property of local 
control and has been successfully applied to Fuzzy-Neural 
control [18]. Also, the hybridization of Fuzzy Logic with 
Neural Network has been done to improve the efficiency of 
function estimation. For instance, Fuzzy Neural Networks 
(FNN) have been used in many applications, especially in 
identification of unknown systems. The FNN can effectively 
model the nonlinear system by calculating the optimized 
coefficients of the learning mechanism [18-22]. The adaptive 
Neural Fuzzy method was proposed in [23] to estimate battery 
residual capacity. Although the estimation of battery residual is 
accurate, the algorithm utilizes the least-square method to 
identify the optimal values and hence, learning rate is 
computationally expensive; much time is wasted in training the 
Neural Network. A more practical approach, called merged-
FNN is developed for SoC estimation [24]. In merged-FNN, 
the FNN strategy is combined with Reduced-form Genetic 

Algorithm (FNNRGA) and this performs effectively in a 
series-connected Li-ion battery string. The merged-FNN 
achieves a faster learning rate and lower estimation error than 
the traditional ANN with a back-propagation method. 

The FNNRGA method is further applied to batteries 

connected in series [25] which modifies the Multiple-Input 

Multiple-Output (MIMO) system into Multiple-Input Single-

Output (MISO). This reduces the number of free parameters 

and thereby reduces training of unnecessary parameters. From 

the discussions above, it is evident that the works involving 

SoC which circulate around the use of Neural Network 

techniques to accurately predict the SoC of any batteries. One 

of the reasons for the immense use of Neural Networks is due 

to their simplicity and a complex mathematical battery model 

[26] is not required to estimate SoC. However, one prominent 

drawback of Neural Network is the requirement of training 

process with many real data, usually more than a thousand 

(>1000). The more data given for the training, the more 

accurate is the Neural Network. Also, the input variable 

selection is very important to increase the accuracy of the 

estimation results. [23] adopts only one data set among several 

data sets (battery terminal voltage, discharge current and 

battery surface temperature). By decreasing the training data 

set, the training time of the Neural Network is greatly reduced. 

However, this reduces the similarity between the Neural 

Network model with the real SoC characteristics of battery.  

IV. APPLICATION OF FORMAL METHODS TO BMS 

Formal Methods (FM) have been widely applied in 
different areas [27], e.g. mechatronics [28, 29], electronics [30, 
31], medical systems [32, 33]. Battery power management 
systems are not exception, however, in most of the cases, 
Dynamic Power Management (DPM), i.e. minimization of 
power consumption by changing operation modes or by scaling 
their voltage or frequency is analyzed. In [34, 35] probabilistic 
model checking is used: system is modeled as a continuous- or 
discrete-time Markov chain, analyzed using Prism tool [34] and 
then constructed transition matrix is passed to Maple for 
optimization problem solving. In this case, model is more 
concerned in power consumption and is not battery-aware. 
Nevertheless, it allows choosing “an optimal” DPS and in such 
a way predicting power usage. Similar approach is taken in 
[36], where stochastic process algebra is used to model and 
analyze different control strategies. Again, it is battery-
agnostic. A lot more interesting approach is described in [37], 
where battery-aware model using continuous-time Markov 
decision processes. Provided models with dual and single 
battery systems already provide a good insight on the 
applicability of such techniques to real-life BMS examples with 
many cells. Similar approach is discussed in [38]. 

V. CONCLUSIONS 

An overview of current techniques for battery SoC 
estimation has been given. We have the intuition that there will 
be space for research related to the core aspect of battery SoC 
estimation using both AI and FM approaches. Also, a 
combined approach of AI and FM will complement the current 
research in the area of battery SoC estimation. Any progress in 
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the research in this direction will significantly impact the 
design and implementation of the smart BMS and battery 
supported cyber-physical systems. Our future will focus on the 
development of new hybrid techniques to accurately estimate 
the SoC of various types of batteries. 

ACKNOWLEDGMENT 

The research work presented in this paper is partially 
sponsored by Transcend Epoch International Co., Ltd, Belize & 
Hong Kong and Natural Science Foundation of Jiangsu 
Province, China (Project Number BK2011351). 

REFERENCES 

[1] K.W.E. Cheng, B.P. Divakar, Hongjie Wu, Kai Ding, Ho Fai Ho, 
"Battery-Management System (BMS) and SOC Development for 
Electrical Vehicles," Vehicular Technology, IEEE Transactions 
on,vol.60, no.1, 2011, pp.76 – 88 

[2] S. Duryea, S. Islam, W. Lawrance, "A battery management system for 
stand-alone photovoltaic energy systems," IEEE Ind. Appl. Mag., vol. 7, 
no. 3, 2001, pp.67–72. 

[3] B. Hauck, BATTMAN—A Battery Management System, Milan, Italy, 
1992. 

[4] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, C. Tassoni, 
"Battery choice and management for new-generation electric vehicles," 
IEEE Trans. Ind. Electron., vol. 52, no. 5, 2005, pp.1343–1349. 

[5] State of Charge. http://en.wikipedia.org/wiki/State_of_charge 

[6] Battery Management Systems (BMS). http://www.mpoweruk.com. 

[7] C. Chen, K.L. Man, T.O. Ting, Chi-Un Lei, T. Krilavičius, T.T. Jeong, 
J.K. Seon, Sheng-Uei Guan and W.H. Prudence Wong, "Design and 
Realization of Smart Battery Management System," in proceedings of 
the IAENG International MultiConference of Engineers and Computer 
Scientists - IMECS'12, Hong Kong, 2012, pp.1173-1176. 

[8] White Paper - Estimating the State Of Charge of Li-Ion batteries. 
http://liionbms.com/php/wp_soc_estimate.php 

[9] I. Buchmann, "How to Measure State-of-charge," Battery univerity, 
2012, http://batteryuniversity.com 
/learn/article/how_to_measure_state_of_charge 

[10] Zhiwei He, MingyuGao, Jie Xu, "EKF-Ah Based State of Charge Online 
Estimation for Lithium-ion Power Battery," Computational Intelligence 
and Security, 2009. CIS '09, 2009, pp.142 – 145 

[11] R. Kalman, "A new approach to linear filtering and prediction 
problems," Transactions of the ASME—Journal of Basic Engineering, 
vol. 82, 1960, pp.35–45. 

[12] R. Bucy, R. Kalman, and I. Selin, "Comment on the Kalman filter and 
nonlinear estimates of multivariate normal process," IEEE Transactions 
on Automatic Control. Vol. 10, pp.118-119. 

[13] Extended Kalman Filters, Wikipedia, 
http://en.wikipedia.org/wiki/Extended_Kalman_filter 

[14] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward 
networks are universal approximators,” Neural Netw., vol. 2, pp. 359-
366, 1989. 

[15] L.X. Wang and J. M. Mendel, “Fuzzy basis functions, universal 
approximation, and orthogonal least squares learning,” IEEE Trans. 
Neural Netw., vol. 3, no. 5, pp. 807-814, Sep. 1992. 

[16] C. H. Wang, W. Y. Wang, T. T. Lee, and P. S. Tseng, “Fuzzy B-spline 
membership function (BMF) and its applications in fuzzy-neural 
control,” IEEE Trans. Syst., Man, Cybern. B, vol. 25, no. 5, pp. 841-851, 
May 1995.  

[17] L. X. Wang, Adaptive Fuzzy Systems and Control. Englewood Cliffs, 
NJ: Prentice-Hall, 1994. 

[18] W. Y. Wang, T. T. Lee, and C. L. Liu, “Function approximation using 
fuzzy neural networks with robust learning algorithm,” IEEE Trans. 
Syst., Man, Cybern. B, vol. 27, no. 4, pp.740-747, Aug. 1997. 

[19]  M. Karam, M.S. Fadali, and K. White, “A Fourier / Hopfield neural 
network for identification of nonlinear periodic systems,” in Proc. 35th 
Southeast. Symp. Syst. Theory, Morgantown, NY, pp. 53-57, Mar. 2003. 

[20] Q. Z. Chang and M. Sami Fadali, “Nonlinear system identification using 
a Gabor / Hopfield network,” IEEE Trans. Syst., Man, Cybern. B, vol. 
26, no. 1, pp. 124-134, Feb. 1996. 

[21] S. K. Park, “Bearing estimation using Hopfield neural network,” in Proc. 
22nd Southeast. Symp. Syst. Theory, Cookville, Tn, Mar. 1990, pp.440-
443. 

[22] N. Kamiura, T. Isokawa, and N. Matsui, “Learning based on fault 
injection and weight restriction for fault-tolerant Hopfield neural 
networks,” in Proc. IEEE Int. Symp. Defect Fault Tolerance in VLSI 
Syst., France, Oct. 2004, pp.339-346. 

[23] W. X. Shen, C. C. Chan, E. W. C. Lo, and K. T. Chau, “Adaptive neuro-
fuzzy modeling of battery residual for electric vehicles,” IEEE Trans. 
Ind. Electron., vol 49, pp.677-684, Jun. 2002. 

[24] I-Hsum Li, Wei-Yen Wang, Shun-Feng Su, and Yuang-Shung Lee, “A 
merged fuzzy neural network and its applications in battery state-of-
charge estimation,” IEEE Trans Energy Conv., vol. 22, pp.689-708, Sep 
2007. 

[25] Y. Lee, W. Wang, T. Kuo, “Soft computing for battery state of charge 
(BSOC) estimation in battery string systems,” IEEE Trans. Ind. Eletron., 
vol 55, pp.229-239, Jan. 2008. 

[26] Z.M. Salameh, M. A. Casacca and W.A. Lynch, “A mathematical model 
for lead-acid batteries,” IEEE Trans. Energy Convers., vol 26, no. 2, 
2011. 

[27] K.L. Man, T. Krilavičius and Kaiyu Wan, “Recent advanced languages 
and tools for hybrid systems,” IAENG Int. Jour. of Comp. Sc., vol. 37, 
issue 3, 2010. pp. 224-233. 

[28] T. Krilavičius, “Simulation of mechatronic systems using behavioural 
hybrid process calculus,” Electronics and Electrical Engineering, No. 
1(81), 2008. 5 pp. 

[29] T. Krilavičius, V. Miliukas, “Functional modelling and analysis of a 
distributed truck lifting system,” Proc. Of the 5th International 
Conference on Electrical and Control Technologies (ECT 2010), 
Kaunas, Lithuania, June 2010. 

[30] K.L. Man, A. Asthana, H.K. Kapoor, T. Krilavičius, J. Chang, “Process 
algebraic specification of DI circuits.” Proc. of the 7th IEEE Int. SoC 
Design Conference (ISOCC), pp. 396-399, 2010. Korea. 

[31] K.L. Man, T. Krilavičius, C. Chen and H.L Leung, “Application of 
bhave toolset for systems control and mixed-signal design,” Int. 
MultiConf. of Engineers and Computer Scientists (IMECS), Hong Kong, 
17-19 March, 2010. 

[32] T. Krilavičius, D. Vitkutė-Adžgauskienė and K. Šidlauskas, “Simulation 
of the Radiation Therapy System for Respiratory Movement 
Compensation,” Journal of Vibroengineering, 14:1, 2012. p. 99-104. 

[33] K.L. Man, T. Krilavičius, Kaiyu Wan, D. Hughes and K. Lee, 
“Modeling and analysis of radiation therapy system with respiratory 
compensation using Uppaal,” Proc. of the 9th IEEE Int. Symp. on 
Parallel and Distributed Processing with Application (ISPA 2011), 
Korea, May, 2011. 

[34] R.K. Gupta, S. Irani, and S.K. Shukla, “Formal methods for dynamic 
power management”, in Proc. ICCAD, 2003, pp.874-882. 

[35] G. Norman, D. Parker, M. Kwiatkowska, S. Shukla and R. Gupta, 
“Using probabilistic model checking for dynamic power management,” 
Formal Aspects of Computing, 17(2), 2005, pp. 160-176,. 

[36] A. Acquaviva, A. Aldini, M. Bernardo, A. Bogliolo, E. Bontà and E. 
Lattanzi, “A methodology based on formal methods for predicting the 
impact of dynamic power management”, in proc. SFM, 2005, pp.155-
189. 

[37] P. Rong, and M. Pedram, “Battery-aware power management based on 
Markovian decision processes,” Proc. of the 2002 IEEE/ACM 
international conference on Computer-aided design (ICCAD '02). ACM, 
New York, NY, USA, 2002, pp.707-713. 

[38] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R. Scarsi, 
“Extending lifetime of portable systems by battery scheduling,” Proc. of 
Design Automation Test Europe DATE Conf (IEEE Comput. Soc), 
2001, pp. 197-201. 

 

4

http://liionbms.com/php/wp_soc_estimate.php

