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Abstract—In this paper we summarise the experiences we ob-
tained during past years in accelerating financial code through
parallelisation and source-level optimisation. We have been
focusing on developing optimised parallel programs to speedup
financial computations where either binomial tree method or
Monte Carlo simulation was applicable. The parallelisation
was through explicit POSIX multi-threading on x86 shared-
memory multi-processor systems. The source-level optimisa-
tions we found most useful were data structure optimisation
and elimination of common sub-expressions.

Index Terms—Parallel computing, Monte Carlo simulation,
Binomial tree method, Source code optimisation, POSIX multi-
threading

I. I NTRODUCTION

SOFTWARE routines that solve computational finance
problems are often time and resource consuming. The

purpose of this paper is to briefly discuss two practical
approaches to accelerate such financial routines, namely,
parallelisation and source code optimisation. We will discuss
their applications on binomial tree method and Monte Carlo
simulation. The purpose is to speedup their executions on
x86 shared-memory multi-processor systems. Both these two
methods are popular computational approaches in quanti-
tative finance. Binomial tree method is often applied in
pricing American-style options whose built-in feature of
early exercise cannot be handled by analytical methods.
However, for those complex options whose value depends
on a basket of basic assets with high-dimensionality Monte
Carlo simulation is often the only effective way to evaluate
their price.

The parallelisation under our discussion is achieved
through explicit POSIX multi-threading. In this approach one
has to explicitly create and manage threads through invoking
corresponding POSIX functions. Although it requires much
more programming efforts than automatic multi-threading
through OpenMP directives, the performance is much better.
The code optimisations we are going to discuss include
data structure optimisation and elimination of common sub-
expressions.

II. EXPLICIT MULTI -THREADING IN BINOMIAL TREE

METHOD

The binomial tree method is an often-used approach in
financial computing to solve problems like option pricing. To
parallelise the computation on a binomial tree the key things
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Fig. 1: Processing the nodes in a binomial tree by multiple threads.

are how to decompose the tree so that different threads work
on different parts independently, and how to synchronise the
working threads. Fig. 1 shows such an example where the
nodes in a 12-level binomial tree are processed by three
threads in parallel. The parallel algorithm reported in [1]
partitions a binomial tree into blocks of multiple levels. A
block is further divided into sub-blocks. Each sub-block is
assigned to a working thread. All working threads in parallel
process the sub-blocks in a block, and then, when finishing,
they move to the next block. The algorithm is an improved
version from the one presented in [2].

A slightly modified algorithm is designed to work on
CPU-GPU heterogeneous platforms [3]. Because on a GPU,
accessing local memory is much more faster than accessing
global memory, the GPU binomial tree algorithm uses double
buffers in shared local memory to reduce the times the global
memory has to be accessed.

III. E XPLICIT MULTI -THREADING IN MONTE CARLO

SIMULATION

Monte Carlo simulation is another popular method used to
solve complex computational finance problems. In a typical
application of this approach a large number of scenarios
are generated, and computations are performed on each of
these scenarios. Usually, the computations performed on one
scenario is independent of the computations performed in
another scenario. For this reason, it is natural to paral-
lelise Monte Carlo simulations using multiple processors.
For instance, on a shared-memory multi-processor system
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Fig. 2: Computations performed in an one-dimensional array which stores
nodes at a level of a binomial tree.

if the number of processors isp, the number of scenarios to
generated isn, a simple parallelisation scheme is to divide
the n scenarios evenly divided among thep processors so
that each processor works onn/p scenarios.

Monte Carlo approach often involves using random num-
bers. It is more desirable if the generation of random numbers
is also parallelised. For this purpose the random number
generator must support the “skipping ahead” method, such
as the ones in Intel MKL [4]. With the same definitions for
numbersn and p, if m is the number of random variates
needed in one scenario, for the parallel generation to work
the i-th processor must skipimn/p numbers in the random
variate stream and generate from theimn/p-th position of
the stream.

The authors’ past work on this topic can be found in [5],
[6], [7]. In [5], [6] the authors worked out Monte Carlo
based algorithms to price American multi-asset stock options
and American interest rate swaptions, respectively. In [7]
the mortgage optimal refinancing problem is tackled by the
parallel Monte Carlo simulation.

IV. CODE OPTIMISATION IN FINANCIAL PROGRAMMING

Option pricing is at the core of many computational
finance problems. Its computational routine should be written
in a way that is highly efficient. For instance, to compute im-
plied volatilities option pricing routine is repeatedly called by
a root-finding procedure that compares the calculated option
price with the market price. For Monte Carlo simulations,
because of the large number of generated scenarios, the time
needed by the computation is usually long. For these reasons,
optimisations in source code level, besides parallelisation, is
often necessary in order to shorten the execution times of
the computational finance procedures.

One of the many optimisation techniques we find useful
is to use simple data structures. For the binomial tree
method, although a tree is a two-dimensional structure, we
do not have to explicitly build a tree in memory. Instead,
an one-dimensional array is sufficient to store the option
values represented by the nodes under processing. All the
computations can be done in an one-dimensional array as
Fig. 2 shows. Maintaining and traversing an one-dimensional
array is much faster than working with a two-dimensional
tree.

Another category of code optimisation often applicable to
financial code is avoiding repetitive computation on common
sub-expressions. In many cases, because of the way those
mathematical expressions are constructed there are common
parts in them. To save computational time we can compute
the common part once and save its value and re-use this

value in subsequent computations. For example, at thek-
th level of a binomial tree, stock prices represented by the
nodes areS0u

k, S0u
k−2, . . . , S0u

−k, whereS0 is the initial
stock price andu is the up-move factor. To compute these
values we letX0 = S0u

k, X1 = S0u
k−2, X2 = S0u

k−4,
etc, andU = u−2. We can see thatX1 = X0U , X2 = X1U ,
X3 = X2U , etc. So, in runtime what we can do is we
save the value ofXi and re-use it to computeXi+1. This
saves execution time because multiplication takes much less
time than the transcendental operation in computinguk.
This makes a big difference, especially when the option
pricing routine gets called repeatedly by some higher-level
procedure, as in the case of calculating implied volatilities
[8]. Another example that shows such optimisation works is
reported in [6], where in computing the drift term in the
extended LIBOR market model this optimisation saves a
big amount of execution time. To apply this optimisation
one often needs to observe carefully on those mathematical
constructions and find out the common sub-expressions.

V. CONCLUSION

We have selected some past work to discuss and the
experience we have learnt. On modern x86 multi-core pro-
cessors through multi-threading and certain source-level op-
timisations the performance of financial code can be greatly
improved, as our past work demonstrate. Writing POSIX
multi-threaded code by hand is a bit hard work. But the
performance improvement brought about justifies the efforts
spent. Mathematical expressions in those financial models
are often constructed in a recursive way such that there are
common sub-expressions. When implementing these models
on computers one has to observe carefully to find out
common sub-expressions so that repetitive computations on
these sub-expressions can be avoided. In out past experience
this saved a great amount of execution time.
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